标签:麻省理工学院
麻省理工学院ICML 24论文:大型语言模型的编程理解与语义习得——揭秘Karel语言中的‘思维过程’
大型语言模型(LLM)不仅能够学习编程,还能形成对现实世界的独特理解。麻省理工学院(MIT)的一项最新研究表明,随着模型能力的增强,它不仅仅模仿现实,而是能够自发地模拟一些复杂的概念。这篇论文已被国际机器学习大会(ICML 24)接受,揭示了LLM在理解和处理现实问题方面的能力远远超出了简单的统计关联。 研究背景及目的 研究团队来自MIT计算机科学与人工智能实验室(CSAIL),由华裔博士生Charles Jin和其导师Martin Rinard教授领导。他们旨在探究LLM是否能够真正理解代码背后的意义,而不只是记忆训练数据。通过构...